WELDING COLD-FORMED STEEL

SUMMARY: In cold-formed steel construction, welding is a viable connection method. Of the various forms of welding, arc welding is most commonly used to join both cold-formed steel members and hardware components. Prefabrication of roof trusses, panelization of walls, and hardware connections are all ideal applications where welding may be the preferred joining method. This Tech Note provides information on the applicable codes, processes, procedures, design considerations, fabrication and inspection.

Introduction

Welds used to connect cold-formed steel may be either arc welds or resistance welds. In building construction, however, welds are generally made using the arc welding process. Resistance welds are commonly used for connecting thin sheet steels in the automotive or appliance. Arc welding is the process of fusing material together by an electric arc, usually with the addition of weld filler metal.

The design of welds for cold-formed steel construction is typically governed by the Specification for the Design of Cold-Formed Steel Structural Members (AISI 1996) and the ANSI/AWS D1.3 Structural Welding Code – Sheet Steel (AWS 1998). Both the AISI and AWS documents contain requirements for the following types of welds: (1) groove weld, (2) arc spot weld (puddle weld), (3) arc seam weld, (4) fillet weld, (5) flare groove weld and (6) plug weld.

The most common weld type to connect sheet-to-sheet or cross section-to-cross section is the fillet weld. Groove welds are commonly used during the roll forming process to connect flat sheet of one coil to the subsequent coil. Arc spot welds, also called puddle welds, are used extensively to attach deck and panels to bar joists or hot-rolled shapes.

Arc welds on steel where at least one of the connected parts is equal to or less than 0.188 in. in nominal thickness shall be made in accordance with AWS D1.3. The AWS D1.3 welding code provides guidelines for the following: workmanship, technique, qualification, and inspection.

Welding Processes

AWS D1.3 defines welding electrodes that appropriately match the strength of the approved base metals. The welding code lists the following as approved welding processes: shielded metal arc welding (SMAW), gas metal arc welding (GMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW), and submerged arc welding (SAW).

SMAW (fig.1)

Shielded metal arc welding (SMAW), commonly known as stick electrode welding or manual welding, is the oldest of the arc welding processes. Versatility, simplicity and flexibility characterize it. The SMAW process commonly is used for tack welding, fabrication of miscellaneous components, and repair welding. SMAW has earned a reputation for depositing high quality welds dependably. It is, however, slower and more costly than other methods of welding, and is more dependent on operator skill for high quality welds and is difficult to use on thin materials.

FCAW (fig.2)

The flux cored arc welding process offers two distinct advantages over shielded metal arc welding. First, the electrode is continuous. This eliminates the built-in starts and stops that are inevitable with shielded metal arc welding. Not only does this have an economic advantage because the operating factor is raised, but the number of arc starts and stops, a potential source of weld discontinuities, is reduced. An other major advantage is that increased amperages can be
used with flux cored arc welding, with a corresponding increase in deposition rate and productivity. Several .035 and .045-inch diameter electrodes are specifically designed for welding galvanized sheet steel.

SAW (fig.3)

Submerged arc welding (SAW) differs from other arc welding processes in that a layer of fusible granular material called flux is used for shielding the arc and the molten metal. The arc is struck between the workpiece and a bare wire electrode, the tip of which is submerged in the flux. Since the arc is completely covered by the flux, it is not visible and the weld is made without the flash, spatter, and sparks that characterize the open-arc processes. The nature of the flux is such that very little smoke or visible fumes are released to the air. SAW is typically not used for thin material unless the process is automated.

GMAW (fig.4)

Gas metal arc welding (GMAW) utilizes equipment much like that used in flux cored arc welding. Indeed, the two processes are very similar, except GMAW uses a solid or metal cored electrode and leaves no appreciable amount of residual slag. Gas metal arc has been a popular method of welding in the fabrication shop and is ideal for sheet steel. However, GMAW is not generally used in the field due to the potential loss of shielding gas. A variety of shielding gases or gas mixtures may be used. Carbon dioxide (CO₂) is the lowest cost gas, and while acceptable for welding carbon steel, the gas is not inert but active at elevated temperatures. This has given rise to the term MAG (metal active gas) for the process when (CO₂) is used, and MIG (metal inert gas) when predominantly argon-based mixtures are used.

GTAW (fig.5)

Gas tungsten arc welding (GTAW) or tungsten inert gas (TIG), as it is sometimes known, is a process where coalescence is produced by heating with an arc between a tungsten electrode and the base metal. The hot tungsten electrode, arc, and weld pool are shielded by an inert gas or mixture of inert gases. Filler metal may be added, if needed, by feeding a filler rod into the weld pool either manually or automatically. The weld quality is high, however, GTAW is usually not used for production since it takes more time to produce a weld than any other method.
Workmanship

AWS D1.3 stipulates that the surfaces to be welded shall be smooth, uniform, and free of imperfections. When welding galvanized sheet, suitable ventilation shall be provided. Also, welding of sheet steels shall not be done when the ambient temperature is lower than 0° F, when the surfaces are wet, or when the welder is exposed to inclement weather. The parts to be joined shall be brought into close contact to facilitate complete fusion. The closeness of the two parts can not be over-emphasized, especially for arc spot welds. If any gap exists between the members prior to spot welding, the strength of the weld may be substantially reduced. Also, to obtain consistently sound welds, the welding current must be controlled.

Qualification

Prequalified Welding Procedure Specifications (WPSs), which are exempt from WPS qualification tests, can be established based on the applicable welding code provisions in AWS D1.3. A WPS is a written set of instructions that defines the joint details, welding electrodes, base metals, electrical parameters, and other procedural variables. Any time welding is performed in accordance to AWS D1.3 a written WPSs must be used, even for prequalified WPSs.

When the welding parameters do not conform to the prequalified status, the welding procedure must be qualified by testing. This happens, for instance, when a base metal other than those in the approved list are used, or when the joint detail does not match one of the prequalified details. A Procedure Qualification Record (PQR) is used to record the actual values of the welding procedure test. After the welded specimens pass the destructive tests, a qualified Welding Procedure Specification can be written.

Welding Procedure Specifications are the responsibility of the manufacturer or the contractor. The required tests, test methods, and required results are prescribed by AWS D1.3. Once a contractor has qualified a welding procedure, the procedure shall be considered qualified for its use indefinitely.

Inspection

AWS D1.3 requires only visual inspection of welded sheet steel joints. The visual inspection shall determine compliance with contract documents. Particular emphasis shall be placed on verifying proper location, size, and length of a weld, in addition to the bead shape, reinforcement, and undercut. Inspectors are also responsible for confirming that qualified or prequalified WPSs and qualified welder are used in performing the work.

Design Considerations

Of primary importance to the structural design engineer is the strength of a welded connection. Strength equations for the six weld types are stipulated by the Specification for the Design of Cold-Formed Steel Structural Members (AISI 1996) which is in general agreement with the Structural Welding Code – Sheet Steel (AWS 1998). The paramount difference between the strength of a welded connection in cold-formed steel and a welded connection in hot-rolled steel is the dominance of sheet tearing as an alternate failure mode. Although the design provisions provide guidance on determination of the weld strength, the design is generally limited by the tearing of the base steel.

The design engineer must also consider workmanship, quality, and inspection when determining if a weld is an appropriate connection method.

Design Equations

A design equation is a mathematical relationship that models the failure of a welded connection. The following is an overview of the Specification’s strength equations for the common weld types.

Groove Weld. The strength of a groove weld depends on the type and direction of load application. For example, when a groove weld is subjected to either tension or compression normal to the axis of the weld, the strength of a groove weld is defined by the yield strength of the sheets being connected, that is AISI Equation E2.1-1. However, when the weld experiences shear, both the weld strength and the connected sheets must be investigated (AISI Equations E2.1-2 and E2.1-3).
Arc Spot Weld. An arc spot weld is made by first melting through the top sheet and fusing the sheets together with the addition of filler metal. AISI Section E2.2 summarizes the strength design rules for arc spot welds. Although strength equations are stated for the weld strength, the primary focus of the design equations is the tearing of the sheet around the perimeter of the weld.

Arc Seam Weld. The behavior of the arc seam weld is similar to the behavior of the arc spot weld. Although AISI Section E2.3 prescribes a design equation for the weld strength, the strength of an arc seam weld typically is governed by tearing of the sheet at the perimeter of the weld.

Fillet Weld. The fillet weld design provisions covered by the AISI Section E2.4 apply to the welding of joints in any position. The welded connection may be either sheet to sheet or sheet to thicker steel member. AWS requires the use of a matching strength electrode; thus the weld material will be of an equal or higher strength than the connecting elements. This creates a design situation for which the strength of the connection will be governed by the tearing of the connected element.

Flare Groove Weld. AISI Section E2.5 is structured to provide guidance for the design of sheet to sheet connections accomplished by either a flare-V groove weld or flare-bevel groove weld, and sheet to thicker steel member for a flare-bevel groove weld. The primary failure mode for groove welds is a tearing of the thin cold-formed steel sheet along the contour of the weld.

Arc Plug Weld. An arc plug weld is similar to an arc spot weld except that the first sheet has a hole prepared prior to welding. During welding, filler metal is added to fill the hole and fuse the base metals together. The current AISI Specification does not address this type of weld; however, the AWS D1.3 code has equations 14 – 18 which can be used for design purposes.

Safety

Arc welding is a safe occupation when sufficient measures are taken to protect the welder from potential hazards. When these measures are overlooked or ignored, welders can encounter such dangers as electric shock, over-exposure to radiation, fumes and gases, and fire and explosion; any of these can result in fatal injuries. Everyone associated with the welding operation should be aware of the potential hazards and ensure that safe practices are employed. Infractions should be reported to the appropriate responsible authority. For specific safety precautions refer to ANSI/ASC Z49.1, Safety in Welding, Cutting, and Allied Processes (AWS 1999).

References

4. Specification for the Design of Cold-Formed Steel Structural Members. The American Iron and Steel Institute, 1996.

Primary authors of this Tech Note: R. Scott Funderburk, Lincoln Electric Dr. Roger LaBoube, University of Missouri/Rolla

This “Technical Note on Cold-Formed Steel Construction” is published by the Light Gauge Steel Engineers Association, with co-funding from the American Iron and Steel Institute. The information provided in this publication shall not constitute any representation or warranty, express or implied, on the part of LGSEA or AISI or any individual that the information is suitable for any general or specific purpose, and should not be used without consulting with a qualified engineer, architect, or building designer. ANY INDIVIDUAL OR ENTITY MAKING USE OF THE INFORMATION PROVIDED IN THIS PUBLICATION ASSUMES ALL RISKS AND LIABILITIES ARISING OR RESULTING FROM SUCH USE. LGSEA believes that the information contained within this publication is in conformance with prevailing engineering standards of practice. However, none of the information provided in this publication is intended to represent any official position of the LGSEA or to exclude the use and implementation of any other design or construction technique.

© Copyright 1999 Light Gauge Steel Engineers Association ● Washington, D.C. ● Toll-Free: 1 (866) 465-4732 ● www.LGSEA.com

TECH NOTE (560-b1) 10/99 4 Light Gauge Steel Engineers Association